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Abstract

Shadow hybrid Monte Carlo (SHMC) is a new method for sampling the phase space of large molecules, partic-

ularly biological molecules. It improves sampling of hybrid Monte Carlo (HMC) by allowing larger time steps and

system sizes in the molecular dynamics (MD) step. The acceptance rate of HMC decreases exponentially with in-

creasing system size N or time step dt. This is due to discretization errors introduced by the numerical integrator.

SHMC achieves an asymptotic OðN 1=4Þ speedup over HMC by sampling from all of phase space using high order

approximations to a shadow or modified Hamiltonian exactly integrated by a symplectic MD integrator. SHMC

satisfies microscopic reversibility and is a rigorous sampling method. SHMC requires extra storage, modest compu-

tational overhead, and a reweighting step to obtain averages from the canonical ensemble. This is validated by nu-

merical experiments that compute observables for different molecules, ranging from a small n-alkane butane with four

united atoms to a larger solvated protein with 14,281 atoms. In these experiments, SHMC achieves an order magnitude

speedup in sampling efficiency for medium sized proteins. Sampling efficiency is measured by monitoring the rate at

which different conformations of the molecules’ dihedral angles are visited, and by computing ergodic measures of

some observables.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The sampling of the configuration space of complex biological molecules is an important and for-

midable problem. One major difficulty is the high dimensionality of this space, roughly 3N , with the
number of atoms N typically in the thousands. Other difficulties include the presence of multiple time and

length scales, and the rugged energy hyper-surfaces that make trapping in local minima common, cf. [1].
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This paper 1 introduces shadow hybrid Monte Carlo (SHMC), a propagator through phase space that

enhances the scaling of hybrid Monte Carlo (HMC) with space dimensionality.

Sampling of configuration space can be done with Markov chain Monte Carlo (MC) methods or using
molecular dynamics (MD). MC methods are rigorous sampling techniques. However, their application for

sampling large biological molecules is limited because of the difficulty of specifying good moves for dense

systems [2] and the large cost of computing the long range electrostatic energy, cf. [3, p. 380]. MD, on the

other hand, can be readily applied, and it enables relatively large steps in phase space as well as allowing

global updates of all the positions and momenta in the system. Nevertheless, the numerical implementation

of MD introduces a bias due to finite step size in the numerical integrator of the equations of motion.

The HMC, introduced in [4], uses MD to generate a global MC move and then uses the Metropolis

criterion to accept or reject the move. HMC rigorously samples the canonical distribution and eliminates
the bias of MD due to finite step size. It is sufficient that the numerical integrator for MD be reversible and

preserve volume in phase space to ensure detailed balance.

Unfortunately, the acceptance rate of HMC decreases exponentially with increasing system size N or

time step dt. This is due to discretization errors introduced by the numerical integrator, cf. [5,6]. These

errors can be reduced by using higher order integrators for the MD step. This was attempted for lattice-

gauge simulations in [7], but with disappointing results. Furthermore, higher order integrators are not an

efficient alternative for MD because the evaluation of the force is very expensive, and these integrators

typically require more than one force evaluation per step.
SHMC is a biased variation onHMC. It uses a highly accurate approximation to the shadowHamiltonian

to sample more efficiently through phase space. The shadow Hamiltonian is exactly conserved by the nu-

merical integrator, and a cheap and arbitrarily accurate approximation has been proposed in [8]. SHMC

samples a noncanonical distribution defined by high order approximations to the shadowHamiltonian, which

greatly increases the acceptance rate of the method. A reweighting of the observables is performed in order to

obtain proper canonical averages, thus eliminating the bias introduced by the shadow Hamiltonian. The

overhead introduced by the method is modest in terms of time, involving only dot products of the history of

positions and momenta generated by the integrator. There is moderate extra storage to keep this history.
In this paper, SHMC is derived, along with: (i) a proof that it preserves microscopic reversibility, which

makes it a rigorous sampling method; (ii) an analysis of the asymptotic speedup of SHMC over HMC,

which is shown to be HðN 1=4Þ when using Verlet/Leapfrog or r-RESPA/Impulse as the integrator; and

(iii) results of evaluating correctness and efficiency of sampling in a number of molecular systems: butane,

decalanine, and BPTI, ranging in size from 4 to 14,281 atoms. Correctness is evaluated by computing:

(i) the average torsion energy for butane and (ii) the average potential energy for decalanine and BPTI.

Efficiency of sampling for the molecular systems is measured by the computer time per new conformation

visited. This depends on both the acceptance rate of HMC and the number of new conformations dis-
covered per simulation. Ergodic measures for the potential energy are also computed.

1.1. Sampling problem

The problem of sampling can be thought of as estimating expectation values for a function AðCÞ with
respect to a probability distribution function (p.d.f.) qðCÞ, where C ¼ X

P

� �
, and X and P are the vectors of

collective positions and momenta. For the case of continuous components of C,

AðCÞh iq ¼
Z

AðCÞqðCÞdC: ð1Þ
1 Work similar in scope to this paper appears in the proceedings of the International Conference on Computational Science

(ICCS’04).
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Examples of observables A are potential energy, pressure, free energy, and distribution of solvent molecules

in vacancies [3,9]. For the sampling of configuration space of biological molecules, q typically corresponds

to a constant temperature T and volume V ensemble (canonical ensemble),

qNVTðCÞ ¼
expð�HðCÞ=ðkBT ÞÞR
expð�HðCÞ=ðkBT ÞÞdC

; ð2Þ

such that H is the Hamiltonian or total energy of the system, kB is Boltzmann’s constant, and T is

temperature.
2. Derivation of shadow hybrid Monte Carlo

The derivation of SHMC follows a discussion of MD, Markov chains, and HMC. The structure of the

proofs for microscopic reversibility of SHMC are modeled after [10].
2.1. Molecular dynamics as a sampling method

MD is an important sampling method for biomolecules. It can be readily applied as long as one has a

‘‘force field’’ description of all the atoms and interactions among atoms in a molecule. MD finds changes

over time in conformations of the molecule. Conformations are semi-stable geometric configurations, and

are defined more precisely in Section 4.3.2.

MD typically solves Newton’s equations of motion, a Hamiltonian system of equations,

_cðtÞ ¼ JHcðcðtÞÞ; J ¼ 0 I
�I 0

� �
; cðtÞ ¼ xðtÞ

pðtÞ

� �
; ð3Þ

with a Hamiltonian

Hðx; pÞ ¼ 1

2
pTM�1p þ UðxÞ; ð4Þ

where M is a diagonal matrix of masses, UðxÞ is the potential energy of the system, and p ¼ M _x are the

momenta. Here, we use a lower case c to denote a variable, whereas later on we specify a particular value of

c by using an upper case, C. This notation is also used for the algorithmic descriptions in the following

sections.

Eq. (3) can be rewritten as

_xðtÞ ¼ M�1pðtÞ; _pðtÞ ¼ F ðxðtÞÞ; ð5Þ

where the conservative forces F ðxðtÞÞ ¼ �rUðxðtÞÞ.
Numerical integrators for MD generate a solution Cn � CðndtÞ, where the step size or time step used in

the discretization is dt. Typical integrators can be expressed as

Cnþ1 ¼ WðCnÞ: ð6Þ

The implementation of SHMC in this paper uses the Verlet or Leapfrog discretization of Eq. (5). This can

be written as
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xnþ1 ¼ xn þ dtM�1pn � 1

2
dt2M�1F ðxnÞ;

pnþ1 ¼ pn � 1

2
dt F ðxnÞ
�

þ F ðxnþ1Þ
�
:

ð7Þ

If the system is ergodic (cf. Section 2.2), modifications to the equations of motion for MD can give the

correct averages for sampling from qNVT, as for example Nos�e thermostat methods [11]. In any case, the use

of a finite time step dt introduces a bias in the estimate of averages using MD.

2.2. Markov chain Monte Carlo

In contrast to MD, Markov chain Monte Carlo methods are rigorous sampling methods. Let qxðxÞ be
the desired probability density function (p.d.f.) for configuration space. Sampling from qxðxÞ may be
performed by simulating a Markov chain Monte Carlo. Moves are suggested according to qsðx0jxÞ, the
conditional p.d.f. for the new configuration x0 given that the previous configuration is x.

Algorithm 1. Markov chain Monte Carlo
Given X :

(1) Generate X 0

(2) Accept X 0 with probability

min 1;
qxðX 0ÞqsðX jX 0Þ
qxðX ÞqsðX 0jX Þ

� �
:

(3) If rejected, choose X .

Algorithm 1 is a generalization of Metropolis Monte Carlo to nonsymmetric proposal distributions, cf.

[12,13, p. 129].

Definition 1. Microscopic reversibility means that

qsðxjx0Þqxðx0Þ ¼ qsðx0jxÞqxðxÞ;

cf. [14, p. 116].

2.3. Hybrid Monte Carlo

HMC combines an MD trajectory with an MC rejection step. It takes advantage of the long steps in

phase space that can be achieved through MD. It also eliminates the inaccuracies due to a finite time step

and other numerical artifacts through the MC step.

Let c ¼ x
p

� �
, and W ¼ W1

W2

� �
be an MD integrator that propagates c through phase space, that is,

cnþ1 ¼ WðcnÞ. Assume that the integrator preserves phase space volume, det ocWðcÞ ¼ 1, and is reversible,

W
�1ðcÞ ¼ RWðRcÞ, where R ¼ I 0

0 �I

� �
. Then HMC, given by Algorithm 2, satisfies microscopic revers-

ibility in configuration space [10].
Algorithm 2. Hybrid Monte Carlo (HMC)
(1) MC step: Generate P from qpðpÞ
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(2) MD step: Given ðX ; P Þ:
(a) ðX 0; P 0Þ ¼ WðX ; P Þ
(b) Accept X 0 with probability

min 1;
qðWðX ; PÞÞ
qðX ; P Þ

� �
;

where qðx; pÞ ¼ qxðxÞqpðpÞ
(c) If rejected, choose X .

2.4. Shadow hybrid Monte Carlo

HMC’s performance degrades when dt and N grow. This is due to errors in the energy, which increase

with dt and N and cause an extremely high rejection rate, cf. Section 2.5. SHMC is a generalization of

HMC, sampling is in all of phase space rather than configuration space alone.

Let ~qðx; pÞ be the target density of SHMC, where

~qðx; pÞ / exp
	
� b ~Hðx; pÞ



; ð8Þ

~Hðx; pÞ ¼ max Hðx; pÞ;H½2k�ðx; pÞ
�

� c
�
: ð9Þ

Here, H½2k�ðx; pÞ is the highly accurate shadow Hamiltonian, defined in Section 3.1, and c is an arbitrary

constant that limits the amount by which H½2k� is allowed to depart from H. It is assumed that
~Hðx;RpÞ ¼ ~Hðx; pÞ.
Algorithm 3 lists the steps required in calculating SHMC. First, a new set of momenta P are generated,

typically from a Gaussian distribution. The new momenta are accepted based on a Metropolis acceptance
step relative to the difference between the total and shadow energies. This is repeated until a set of momenta

are accepted. The number of attempts required for accepting the momenta can be controlled by the pa-

rameter c, which is discussed further in the following paragraph and in Section 4.3.6. Next, the system is

integrated using MD and accepted with probability proportional to Eq. (8). Finally, in order to calculate

unbiased values, the observables must be reweighted. Even though the reweighting is listed as part of the

algorithm, it is in fact a postprocessing step.

Algorithm 3. Shadow hybrid Monte Carlo (SHMC)

(1) MC step: Given X ¼ x, generate P with p.d.f. ~qðX ; pÞ, using the acceptance–rejection method:

(a) Generate P having p.d.f. qpðpÞ
(b) Accept with probability

min 1;
expð�bðH½2k�ðX ; P Þ � cÞÞ

expð�bHðX ; P ÞÞ

� �
: ð10Þ

(c) Repeat (1a)–(1b) until P is accepted.

(2) MD step: Given C ¼ X
P

� �
,

(a) C0 ¼ RWðCÞ (where W nearly conserves H½2k�)

(b) Accept C0 with probability

min 1;
~qðC0Þ
~qðCÞ

( )
:
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(c) If rejected, choose C.
Reweighting Post-processing: Given sequence of fA;Cg, reweight observable A using qðCÞ=~qðCÞ before

computing averages.

For example, to obtain proper canonical distributions:

hAiqNVT ¼
Pm

i¼1 wiAiPm
i¼1 wi

;

where
wi ¼
exp � bHðCiÞð Þ
exp � b ~HðCiÞ

	 
 :

SHMC’s parameter c appears in the momenta and position acceptance equations and is also used during

the reweighting step. The effect of c on the simulation is readily apparent. For large positive c, SHMC is

equivalent to HMC with a different set of momenta. In this HMC-like regime, the acceptance rate of the

MD step is low and that of the MC step is high. Also, the deviation of the reweighted values is small.

Conversely, for large negative c, the acceptance rate of the MD step is high while the acceptance of the MC

step is low. In this regime, there is large variation in the reweighted values. Currently, the value of c is
chosen proportional to the average difference between the Hamiltonian and the shadow Hamiltonian. A

small number of simulation steps gives a good approximation to this parameter, see Section 4.3.6.

Let DH ¼ H½2k� �H. Experiments suggest that DH is predominantly positive in MD simulations. Fig.

1 shows a typical plot of the total energy of a 66-atom decalanine molecule simulated using Leapfrog. In

addition, the 4th and 8th order shadow Hamiltonians are also shown. The accuracy of the shadow

Hamiltonians is apparent.
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Fig. 1. Total energy, 4th and 8th order shadow Hamiltonians for a simulated decalanine.
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Proposition 1. SHMC satisfies microscopic reversibility.

Proof. Both the MD and MC steps separately satisfy microscopic reversibility, as is shown in the next two

propositions. Thus, SHMC, which is the combination of the MD and the MC steps, also satisfies it. �

Proposition 2. The MD step of SHMC satisfies microscopic reversibility.

Proof. Sufficient to consider c0 6¼ c. Let pAB be the probability of C 2 A and C0 2 B, assuming C has p.d.f.
~qðcÞ. Then

pAB ¼
Z
A

Z
B
~qðc0jcÞ~qðcÞdc0 dc:

It suffices to show that pAB ¼ pBA for arbitrary A \ B ¼ /. Now,

pAB ¼
Z Z

vAðcÞvBðRWðcÞÞmin 1;
~qðWðcÞÞ
~qðcÞ

( )
~qðcÞdc;

where vA and vB are indicator, or characteristic, functions of sets A and B, and then

pAB ¼
Z Z

vAðcÞvBðRWðcÞÞmin ~qðcÞ; ~qðWðcÞÞ
n o

dc:

Replacing c by W�1ðcÞ ¼ RWðRcÞ:

pAB ¼
Z Z

vAðRWðRcÞÞvBðRcÞmin ~qðRWðRcÞÞ; ~qðcÞ
n o

dc:

Finally, replacing c by Rc:

pAB ¼
Z Z

vAðRWðcÞÞvBðcÞmin ~qðcÞ; ~qðWðcÞÞ
n o

dc ¼ pBA: �

Proposition 3. The MC step generates ~qðx; pÞ.

Proof. The main result is due to von Neumann ([15]; as quoted in [14, p. 349]; cf. [16, pp. 171 ff]). The

acceptance–rejection method generates a random number with a complicated p.d.f. f ðzÞ. The distribution

function is split as f ðzÞ ¼ CgðzÞhðzÞ, where hðzÞ is a simple p.d.f., CP 1, and 06 gðzÞ6 1. A random
variable Z with p.d.f. hðzÞ is generated; then a uniform random number U from (0, 1) is generated. If

U 6 gðZÞ, then Z has the p.d.f f ðzÞ. Otherwise, repeat the process.

Let z ¼ P , then

f ðzÞ ¼ ~qðx; pÞ ¼ qxðxÞqpðpÞmin 1; exp
��
� bðH½2k�ðx; pÞ � c�Hðx; pÞÞ

��
:

Here, C ¼ qxðxÞ, hðzÞ ¼ qpðpÞ, e.g., the Gaussian distribution of velocities in HMC, and

gðzÞ ¼ minf1; expð�bðH½2k�ðx; pÞ � c�Hðx; pÞÞÞg. �

Proposition 4. The MC step of SHMC satisfies microscopic reversibility.

Proof. Since previous P 0 and P are independent, the probabilities of going from one to the other are clearly
symmetric. �
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2.5. Theoretical performance of SHMC

The cost of HMC as a function of system size N and time step dt has been investigated in [5,10,17]. HMC
drives ðx; pÞ towards an equilibrium with a coupled probability

qðx; pÞ ¼ qxðxÞqpðpÞ / expð�bHðx; pÞÞ:

Using the property of volume preservation, the expected value over this distribution is

expðh � bdHðx; pÞÞiq ¼ 1; ð11Þ

where the discretization error dH ¼ Hðx0; p0Þ �Hðx; pÞ. Taking the log of both sides of Eq. (11):

log expðh � bdHðx; pÞÞiq ¼ 0:

Henceforth the parameters of the Hamiltonian H and the density q are omitted. Since exp is a convex

function, hdHiP 0, with equality possible only if the MD integrator W exactly conserves energy. For small
dH, the expansion of Eq. (11) up to a third order term is

expðh � bdHÞi ¼ 1� b dHh i þ b2

2
dH2

 �

þOðdH3Þ ¼ 1:

Thus,

dHh i ¼ b
2

dH2

 �

þOðdH3Þ: ð12Þ

What is the expected value of the probability of acceptance in HMC? In order to obtain a nonzero average

acceptance probability in the limit N ! 1, dt ! 0. In this limit, the distribution of the average discreti-

zation error becomes Gaussian, since the higher order terms vanish. Substituting this result in the definition

of the acceptance probability, one gets that

PA ¼ erfc 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b dHh i

p	 

:

For an MD integrator W that is OðdtmÞ accurate, Eq. (12) means that

dHh i ¼ OðN dt2mÞ;
concretely, dt / N�1=ð2mÞ.

Let L be the MD trajectory length needed to produce an uncorrelated sample. Assuming L is fixed, the

cost of producing uncorrelated samples increases as

CMDN 1=ð2mÞ þ CMC; ð13Þ
where N 1=ð2mÞ is the number of MD steps to achieve a trajectory of length L. CMD is the cost of each MD

step, which depends on the cost of the force evaluation, and will be anywhere from HðNÞ for cutoff

computation toHðN 2Þ for all pairs evaluation, or more typicallyHðN logNÞ for tree methods or FFT-based

methods. CMC is the cost of generating P , basically the generation of HðNÞ random numbers from a

Gaussian distribution.

A similar argument can be made for the acceptance rate of SHMC, but now with respect to the equi-

librium p.d.f. ~q. Thus, hd ~Hi ¼ Oðdt2pÞ, where p ¼ 2k is the order of the shadow Hamiltonian H½2k�, and the
cost of producing uncorrelated samples increases as

SMDN 1=ð2pÞ þ SMC: ð14Þ
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The asymptotic speedup of SHMC over HMC is given by the quotient of Eqs. (13) and (14). Note that

SMD � SMC and CMD � CMC. However, SMC PCMC due to the additional rejection step for the momenta in

SHMC. The asymptotic speedup is given by

g ¼ N 1=ð2mÞ

N 1=ð2pÞ ¼ N
1
2
p�m
mp ; ð15Þ

and becomes OðN 1=4Þ for high order shadow Hamiltonians.
3. Implementation of SHMC

Although SHMC may seem complicated, the complications are more in the formulas than in the logic, so

it is not difficult to program. Pseudocode for SHMC is in Appendix A, and an explanation of this code

follows.
3.1. Approximation to the shadow Hamiltonian

In the case of a Hamiltonian system, Eq. (3), the modified equation for an integrator is Hamiltonian if

and only if the integrator is symplectic, cf. [18, p. 129–136]. The integrator is symplectic if

ocWðcÞTJocWðcÞ � J . There is also evidence that the numerical solution of symplectic integrators stays close

to the solution of a modified Hamiltonian Hdtðx; pÞ for very long times [19]. Work by Skeel and Hardy [8]

shows how to compute an arbitrarily accurate approximation to the modified Hamiltonian integrated by

symplectic integrators based on splitting. The goal is to compute

H½2k�ðx; pÞ ¼ Hdtðx; pÞ þOðdt2kÞ; ð16Þ

where H½2k� is a shadow Hamiltonian of order 2k.
The construction adds a new position variable and a conjugate momentum variable b to get an extended

Hamiltonian �HðyÞ which is homogeneous of order 2. For this Hamiltonian, �HðyÞ ¼ 1
2
_yðtÞT�JyðtÞ. An ap-

proximation to yðtÞ is formed using the numerical solution of the extended Hamiltonian system �H. The

resulting shadow Hamiltonian approximation satisfies Eq. (16).

The shadow Hamiltonian is a combination of trajectory information, that is, k copies of available po-

sitions and momenta generated by the MD integration, and an extra degree of freedom b that is propagated

along with the momenta. By construction, H½2k� is exact for quadratic Hamiltonians, which is useful, be-

cause harmonic motion dominates applications such as MD. Details can be found in the original reference.
Formulae for the 4th and 8th shadow Hamiltonians, k ¼ 2 and k ¼ 4 respectively, follow:

H½4� ¼
1

2dt
A10

�
� 1

6
A12

�
; ð17Þ
H½8� ¼
1

2dt
A10

�
� 2

7
A12 �

19

210
A14 þ

5

42
A30 þ

13

105
A32 �

1

140
A34

�
: ð18Þ

Define the ith centered difference formula to be d½i�xn. So, for example, d½2�xn would represent the 2nd

centered difference of the positions:

d2xn ¼ xnþ1 � 2xn þ xn�1: ð19Þ
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The averaging operator is similarly defined by lxn ¼ 1
2
wnþ1=2 þ 1

2
wn�1=2.

Now, define Aij, where i is odd and j is even, as follows:

Aij ¼ ld½i�xn � d½j�pnM � d½j�xn � ld½i�pnM � ld½i�bn : j ¼ 0

ld½i�xn � d½j�pnM � d½j�xn � ld½i�pnM : j 6¼ 0

�
ð20Þ

Finally, the b term propagated by Leapfrog is

bnþ1 :¼ bn � dtðxn � F n þ 2UðxnÞÞ: ð21Þ
3.2. SHMC implementation details

SHMC is implemented inside of an existing framework for MD simulations, PROTOROTOMOLOL [20,21].

However, SHMC is unlike any of the existing integrators due to the fact that it requires values both

‘forward’ and ‘backward’ in time to properly calculate it at the current time step. In order to simulate

calculating forward elements, the simulation is run and values are saved as needed. When enough steps

have been saved, the shadow is computed and stored along with the data corresponding to the step at which
it was to be calculated. The shadow Hamiltonian only needs to be computed at the beginning and end of the

MD step, which is typically hundreds of time steps long. The history of values needed by SHMC are stored

in a data structure known as a deque. A deque is a double ended queue, which means elements can be

accessed from both the beginning and the end of the queue. A deque was chosen since values must oc-

casionally be inserted or removed from both ends, depending on whether the simulation is going forwards

or backwards in time.

After saving the current state of the system, momenta are randomly generated with a Gaussian distri-

bution proportional to the temperature of the system. The total energy, HðCÞ, is calculated and stored. In
order to calculate H½2k�ðCÞ, k=2 ‘‘past’’ and k=2 ‘‘future’’ values of the state of the system are required. At

the beginning of the MD step, a backwards simulation is run for k=2 steps and the history needed by

SHMC is stored at each step. It is now necessary to restore the system to the state in which it originally

existed with the new momenta. The simulation is run forward for k=2 steps and again the data needed by

SHMC is stored. It is now possible to compute H½2k�ðC0Þ and determine whether or not this new set

of momenta are accepted. If the momenta are accepted, the simulation resumes from time step k=2. If the
momenta are not accepted then restore the complete system to the state in which it existed before the new

momenta were generated. This process is repeated until a new set of momenta are accepted. The number of
required repetitions can be reduced by increasing c.

At the end of the MD step, the state of the system is saved and then run for an additional k=2 steps. Once

the data needed to calculate the shadow is available, the system is restored back to its state at time nmd. If

the new positions are accepted then this cycle is complete. If the new positions are rejected, then the original

positions must be restored. In addition, the forces and energies associated with these positions must also be

returned to their original values.
4. Numerical tests

Testing is used to determine the validity of the following hypotheses:

(H1) SHMC samples with reasonable efficiency as the system size N and the time step dt are increased.
Slight performance degradation is expected as N increases due to greater truncation and round off

error. Similarly, as dt approaches its upper bound, set both by instabilities in the MD integrator
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and the fastest motions of the system, performance is affected. However, these effects are negligible

for reasonable values. These results are in Section 4.3.5.

(H2) SHMC has an asymptotic speedup over HMC of HðN 1
4Þ. Experimental results in Section 4.3.5 agree

with the analysis of Section 2.5.
(H3) The overhead of computing the shadow Hamiltonian is small for values of L needed to produce un-

correlated samples, where L ¼ nmd � dt.
(H4) Any bias introduced by sampling from the shadow Hamiltonian is removed by a re-weighting of sam-

pled values, cf. Algorithm 3. Reweighted averages for potential energies of molecular systems tested

are indistinguishable from correct estimates obtained using HMC, cf. Section 4.3.3.

4.1. Test systems

SHMC was tested on molecular systems ranging from the simple alkane n-butane with only four (united)

atoms to a more complex solvated protein, BPTI, with 14,281 atoms. While n-butane is a simple molecule,

it is a common test case because results can be verified analytically [22]. Table 1 lists the test molecules, the

corresponding number of atoms, and the length of L, the length of each MC step.

Testing was done on a 44 node Linux cluster administered by the Department of Computer Science and

Engineering at the University of Notre Dame. Each node contains 2, 2.4 GHz Xeon processors and 1 GB

RDRAM. There is nearly a terabyte of storage as well as fast Ethernet and Myrinet networking.

4.2. Method parameters

HMC and SHMC have several parameters that affect their performance, including the random number

generator, the integrator chosen for the MD, and integrator parameters: time step dt and trajectory length

L. SHMC also needs a tuning parameter c to indicate allowed divergence between the shadow and the total

energy. HMC and SHMC currently use the random number generator drand48(), although methods

with longer periods may be preferable, cf. [3, p. 355].

Any time reversible and volume preserving integrator can be used for HMC. SHMC requires in addition
that the integrator be symplectic in order to compute the shadow Hamiltonian. In this work, implemen-

tations of HMC and SHMC use the Verlet/Leapfrog discretization of Eq. (7), which satisfies the constraints

for both propagators.

The choices of L and dt have dramatic effects on performance of HMC and SHMC. L should be long

enough so that the longest correlation times of interest are sampled during an MD step, thus avoiding the

random walk behavior of MC. One way of approximating the correlation times in a molecular system is to

compute the normal modes through a linearization of the interaction forces of interest, and take the

maximum period smax as a desirable value for L. Ideally, dt should be close to smin, and thus nmd � smax=smin.
In practice, however, numerical artifacts like instability and resonance force dt � smin. Based on sugges-

tions in [23], a value of nmd is chosen from a distribution ½0:7L=dt, 1:3L=dt�. The maximum time step dt is
fixed by stability limits of Verlet/Leapfrog. The efficiency of the methods are compared for fixed expected
Table 1

Listing of molecules used for testing SHMC

Molecule Number of atoms L (fs)

n-butane 4 630

Decalanine 66 300

Solvated BPTI 1101 42

Solvated BPTI 14,281 15
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value of the trajectory L, such that E½L� ¼ L. This way, direct comparisons can be made between simulations

with different dt.

4.3. Test metrics

Several metrics have been used to test SHMC against HMC. The efficiency of sampling is measured by

computing the cost to generate a new geometric conformation. The statistical error is measured by com-

puting several observables using both methods. Additionally, the acceptance rate and the conformation

count of the methods is computed to understand the method’s behavior.

4.3.1. Acceptance rate

The acceptance rate (AR) is the ratio of accepted moves to total moves attempted in Algorithm 2. The
best AR is the one that samples configuration space more quickly, cf. [3, p. 376].

Fig. 2 shows the average probability of accepting a step based on the time step for HMC and SHMC.

Both methods decay with increasing time step, but HMC does so much faster than SHMC.

4.3.2. Conformations

The number of molecular conformations visited by HMC and SHMC is determined using a method

suggested in [24,25]. This method monitors the molecules’ dihedral angles. In a preprocessing step, each

dihedral angle is divided into wells. Divisions between wells are placed at the maxima of the dihedral
potential energy. At each HMC or SHMC step, every angle is assigned an integer corresponding to the well

currently occupied by the angle. This results in a string that identifies the conformation. A conformation is

considered a unique structure if an equivalent string has not yet been recorded. Angles that involve hy-

drogens are not considered in the analysis. One feature of this method is that it can be generalized to all

dihedral angles. More importantly, it is independent of the propagator used to actually generate new

conformations. This method is justified by the fact that once a dihedral angle is within the well formed

between two local maxima, the natural behavior of the angle is to approach the local minimum.

As the number of atoms increases, the possible states of these strings increases exponentially. Even a
small protein such as BPTI has more than 2000 dihedral angles. The majority of these contain hydrogen

atoms and are immediately discounted from analysis due to the fast motion of the hydrogen. Even so, there
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are still hundreds of dihedrals each with multiple wells. With roughly 200 dihedrals from BPTI, say with

three wells each, there would be a state space of 3200 different strings. In practice, there are many non-

physical states (e.g., overlapping configurations) and inaccessible states due to high local energy barriers.
The rugged nature of the energy hyper-surface can not be eliminated solely by efficient propagators, but

requires methods such as potential smoothing or multi-canonical ensembles, cf. [1].

A dihedral (torsion) angle occurs when, within a molecule, there are four atoms connected linearly end-

to-end. The first three atoms form a plane, as do the last three atoms. The dihedral angle is the angle

between the two planes. 2 The potential energy for a single dihedral angle is defined as follows:

Udihð/Þ ¼
Xm
i¼1

1

2
fið1þ cosðni/� diÞÞ: ð22Þ

Associated with each term in the potential energy for a dihedral angle / is a force constant f , a periodicity
n, a phase-shift d and a multiplicity m. Many dihedral angles are defined with m ¼ 1, but there are some that

can only be constructed as a combination of multiple terms.

Algorithm 4 is used to count the number of conformations discovered by the propagators. The pre-

processing step enumerates the possible states or wells for the dihedrals. It finds all the local minima and

maxima of the dihedral function using Brent’s method. Thus, it is able to define the domain of each

conformation. During simulation, the matching step generates a string identifying the conformation. If a

new string is generated, it is stored in a set container, along with the time at which it was generated. The

preprocessing step, if done on all the elements of a force field and stored, need only be done once.

Algorithm 4. Method for counting molecular conformations.

(1) Preprocessing:

(a) Remove dihedrals containing H
(b) Find maxima of Eq. (22) using Brent’s method

(c) If the phase shift is nonzero, shift the critical points accordingly

(d) Enumerate wells for dihedrals

(2) Matching:

(a) Determine which well each dihedral occupies

(b) Form conformation string based on wells of dihedrals

(c) Update counter and time step for conformation string.

4.3.3. Average dihedral energy

To test correctness of SHMC and the ability to use it as an unbiased estimator, the average dihedral

energy for butane, and the average potential energy for decalanine and BPTI are computed. The average

dihedral energy for butane can be obtained analytically at any temperature T , where b ¼ 1=kBT , by

Udihð/Þ

 �

b
¼

R 2p
0

Udihð/Þ expð�bU
dihð/ÞÞd/R 2p

0
expð�bU dihð/ÞÞd/

: ð23Þ

The analytical result at T ¼ 300 K is compared against averages obtained using HMC and SHMC. The

parameters for the butane dihedral are those in CHARMM 22 [26]:

Udihð/Þ ¼ 1:6ð1þ cosð3/� pÞÞ þ 0:6ð1þ cosð/� pÞÞ; ð24Þ
2 An alternate definition has the dihedral defined to be the angle between the normals to the two planes.
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where Udihð/Þ has units of kcal mol�1 (1 kcal mol�1 ¼ 4.1868 kJ mol�1). Substituting Eq. (24) into Eq. (23),

and evaluating this integral numerically for b ¼ 1=ðkB300 KÞ, where kB ¼ 0:00198719 kcal mol�1 K�1 gives

Udihð/Þ

 �

b¼1=ðkB 300 KÞ ¼ 0:62848 kcal mol�1: ð25Þ

This expectation value is correct for butane because the dihedral angle coordinate decouples from the rest

of the internal coordinates (bonds and angles), and the functional determinant from Cartesian to internal

motion is 1, cf. [22].

Simulations of four united-atom CH3–CH2–CH2–CH3 butane were performed. The mass of CH3 is

15.035 u and CH2 is 14.027 u. A total of 16 simulations of total length 114 ns at T ¼ 300 K were run. Values

for the expected MD trajectory length are L ¼ f630; 450; 234; 72 fsg, where 630 fs � smax for butane. Time

steps dt ¼ f8; 6; 3; 1 fsg, where 8 fs is close to the stability limit of Leapfrog for butane. The values com-
puted from the simulations for L ¼ 630 fs are shown in Table 2.

The error bar is estimated as the standard deviation computed using the block averaging method of

Flyvbjerg and Petersen [27,p. 530]. It can be seen that all the values agree with the analytical result of Eq.

(25).

4.3.4. Average potential energy

The average potential energy for BPTI is computed using CHARMM 22 parameters for proteins [28,29].

Table 3 shows the average potential energy (PE) for decalanine. There is no statistically significant dif-
ference among the values. All of the reweighted values are within at least one standard deviation of the

unweighted HMC values. Additionally, the reweighted standard deviation is acceptable in all cases.

The values for solvated BPTI with 1101 atoms are listed in Table 4. Here, there is still good agreement

between the reweighted PE and that of HMC. However, the standard deviation is not as close for the

smaller time steps. A larger value of c would alleviate this but it would also decrease the probability of

acceptance. It should be noted that the time steps considered here are rather large for the size of this input.

HMC was unable to accept even a single move for dt ¼ 1, which is why it has no value listed.

Finally, consider the PE of the solvated BPTI, with 14,281 atoms, in Table 5. These results are not quite
as good when compared to the previous two molecules. This behavior is most likely due to a bad choice of

c. Unfortunately, the time required to execute simulations at this size molecule is on the order of days even
Table 2

Expected value of the torsional energy Udih for n-butane

dt (fs) HMC (L ¼ 630 fs) SHMC (L ¼ 630 fs)

hUdihð/Þi AR hUdihð/Þi AR

1 0.62	 0.01 (100%) 0.64	 0.01 (100%)

3 0.63	 0.01 (96%) 0.63	 0.01 (100%)

6 0.63	 0.01 (79%) 0.64	 0.01 (100%)

8 0.65	 0.02 (51%) 0.67	 0.01 (99%)

Table 3

Average potential energy and standard deviation for decalanine for HMC and SHMC using the 8th order shadow Hamiltonian

Method Time step

0.5 0.75 1.0 1.25 1.5 2

HMC 97.5	 6.5 97.4	 6.9 100	 6.6 99.8	 6.7 98.1	 7.1 97.4	 9.1

SHMC 103	 6.7 102	 7 96.8	 7.2 98.9	 6.8 97.3	 8 99.7	 8.4

The MD step trajectory length L ¼ 100 fs.



Table 5

Potential energy and standard deviation for BPTI with 14,281 atoms

Method Time step

0.1 0.25 0.5

HMC )40293	 227 )40080	 88 –a

8th )40798	 2217 )40739	 290 )40520	 506

The MD step trajectory length L ¼ 15 fs.
aHMC was unable to accept an adequate number of conformations for this time step.

Table 4

Potential energy and standard deviation for BPTI with 1101 atoms for HMC and SHMC using the 8th order shadow Hamiltonian

Method Time step

0.25 0.5 1.0

HMC )1590	 33 )1566	 21 –a

SHMC )1583	 122 )1581	 30 )1562	 35

The MD step trajectory length L ¼ 42 fs.
aHMC was unable to accept an adequate number of steps for this time step.
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for short runs. Therefore, this limits the amount of experimentation to determine an optimal value for c.
Better ways to estimate c are being investigated.

4.3.5. Sampling efficiency

The sampling efficiency of HMC and SHMC is defined as the computational cost per new conformation.

This value is calculated by dividing the running time of the simulation by the number of conformations

discovered.

Cost of sampling ðCSÞ ¼ Execution time ðETÞ
Unique conformations ðCÞ : ð26Þ

Comparisons of this value are only valid for simulations run using the same platform and the same input.

However, this is a fair metric when comparing different sampling methods, since it takes care of the

overhead of more sophisticated trial moves, and any other effects on the quality (or lack thereof, e.g.,

correlation) of samples produced by different sampling techniques.

In Fig. 3 we show the number of conformations per second as a function of the time step for a 66-atom

decalanine. Lower values denote a better sampling efficiency. At its best, HMC is only as good as SHMC

for one time step, dt ¼ 1. In terms of efficiency, SHMC shows great speedup over HMC when the optimal
values for both methods are used.

Speedup ¼ Best efficiency HMC

Best efficiency SHMC
: ð27Þ

Since the cost per conformation for SHMC still appears to be decreasing as the time step increases, it is

possible that the speedup is larger. Figs. 4 and 5 show even more dramatic results for BPTI with 1101 and

14,281 atoms, respectively. This is expected, since the speedup increases asymptotically as OðN 1=4Þ.
Table 6 lists the results recorded as well as the theoretical asymptotic speedup for all three molecules. As

can be seen from the table, there is good agreement for the smaller molecule and excellent agreement for the

larger molecule. The BPTI containing 1101 atoms does not agree very well with the asymptotic speedup.
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This could be due to several factors. Most likely, a poor choice of c was made when doing the initial runs.

Additionally, these values were chosen such that the variance of the observed potential energy was mini-

mized among all given runs. Even so, there is still a 2-fold increase in efficiency over standard HMC. BPTI
with 14,281 atoms achieves a speedup of 10.

Zhou et al. [30,31] use a method that can approximately determine whether a sampling algorithm is er-

godic. By studying how long it takes two independent trajectories to achieve self-averaging of a property, we

can gauge the efficiency of the method. The ergodic measure for the potential energy of a system is defined by

duðtÞ ¼ �uaðtÞ
��� � �ubðtÞ

���2; ð28Þ

where �u ¼ 1
t

R t
0
uðsÞds is the average potential energy from time 0 to t, and a and b are independent tra-

jectories. Fig. 6 shows the results for a pair of simulations of decalanine. In this graph we compare the

results of HMC and SHMC for a time step of 0.5 fs. The value for the constant c is 0.6, a relatively large

value for this size molecule. The y-axis is the value of duðtÞ normalized by duð0Þ and plotted with a log scale.



Table 7

Speedup of SHMC over HMC based on conformational efficiency only

Number of atoms 4th order SHMC 8th order SHMC Theoretical

66 1.6 2.5 2.4

1101 2.6 3.5 5.6

14281 12 16.5 10.0
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Fig. 6. Ergodic measure of the potential energy for a 66-atom decalanine with time step 0.5 fs.

Table 6

Speedup of SHMC over HMC based on conformational efficiency and moderate variance

Number of atoms 4th order SHMC 8th order SHMC Theoretical

66 1.6 1.7 2.4

1101 2.2 2.1 5.6

14281 9.7 10.1 10.0
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The x-axis represents the number of simulated steps for each algorithm. If two trajectories are self-aver-

aging, then the plot of duðtÞ should approach 0. The graph shows that the ergodic measure for HMC is

decreasing, albeit much more slowly than the ergodic measure for SHMC. This is further evidence that

SHMC is a more efficient sampling method than HMC.

The emphasis for all data collected in this paper was to minimize the variance. However, larger speedups

are possible if one disregards the variance, cf. Table 7. Here, similar results for the smaller molecules are

seen, but the speedup for the larger BPTI is quite impressive. In order to achieve these speedups, methods
that minimize the variance, such as control variates, are being considered.

4.3.6. The parameter c
Choosing a good value for c is very important to the performance of SHMC. Currently, the best method

for verifying a particular choice is through experimentation. In practice, the following steps offer a good

initial starting point:
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• Run SHMC on the system of interest and record DH ¼ H½2k� �H at each step. The more data points

recorded, the more accurate c will be.

• Determine the expected value and standard deviation of DH.

• Choose c to be approximately hDHi � 1:5 � r.
Through numerous experiments, this policy has shown to be a good heuristic, although it is sometimes

necessary to further adjust the value of c. Additional experiments around the starting value of c are usually
beneficial.

In the following graphs, the effect of c on the simulation is shown. Fig. 7 shows a plot of the standard

deviation of the potential energy as a function of the value chosen for c. The system is decalanine, with a

time step of 2 fs. This is a pattern echoed throughout the numerical experiments.

As can be seen in Fig. 8, the average probability of accepting the MD move also decreases as c increases.
This shows the importance of making c as small as possible.

In Fig. 9, the number of MC rejections per SHMC step are plotted. As c increases, the number decreases

with the value going to 0 as c gets large. This puts a lower bound on the value of c. If too small of a value is
chosen for c, then there will be more rejections per step and the efficiency will drop because of the extra

overhead.

As can be seen from the previous figures, the choice of c must be considered before any serious appli-

cation of SHMC. This is especially true as the size of the system and the time step increase.
5. Discussion

SHMC is a generalization of HMC that samples from a p.d.f. in all of phase space. This p.d.f. is induced

by a modified Hamiltonian. Since the modified Hamiltonian is by construction close to the true Hamil-

tonian, the reweighting does not damage the variance. The additional parameter, c, of SHMC, measures the

amount by which the modified and the true Hamiltonian can depart. Different regions of phase space may

need different optimal parameters. Here, c is chosen to satisfy both bounds on the statistical error of

sampling and an acceptable performance. A rule of thumb is that it should be close to the difference be-

tween the true and the modified Hamiltonian. Other criteria are possible, and it would be desirable to

provide ‘‘optimal’’ choices.
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For SHMC and methods that sample from noncanonical distributions, it is important to check the

efficiency of sampling for the canonical ensemble after reweighting. The appropriate metric for efficiency

depends on the application. The metric used here seems adequate for sampling of biomolecules. One could
also only include the U [3, p. 83] or W dihedrals of biological molecules. Even more general are the various

ergodic measures that measure the self-averaging properties of algorithms, cf. [31].

The efficiency of Monte Carlo methods can be improved using other variance reduction techniques. For

example, [32] improves the acceptance rate of HMC by using ‘‘reject’’ and ‘‘accept’’ windows. It accepts

whether to move to the accept window or to remain in the reject window based on the ratio of the sum of

the probabilities of the states in the accept and the reject windows. We are also actively exploring to see if

the method of control variates could be used in SHMC, cf. [16, pp. 277 ff].

Other generalizations of HMC enhance barrier crossing in rugged energy hyper-surfaces. The adaptive
temperature HMC method [22] has an additional parameter that is adapted to enhance sampling at low

temperatures. It samples from a mixed canonical ensemble. HMC is combined with tempering by Neal [33].

Other multicanonical protocols are the original protocol of Berg and Neuhaus [34], J-walking [35], mul-

ticanonical J-walking [36], 1=k sampling [37], and simulated tempering [38]. Some methods sample from

non-Boltzmann ensembles, such as Tsallis’ [39]. Other methods make the potential energy surface smooth,

e.g., [40,41].

HMC has been combined with multiple time stepping (MTS) algorithms such as r-RESPA [42,43], which

allows longer time steps in the MD step. Extension of SHMC to MTS would require construction of
shadow Hamiltonians for MTS integrators. It might also be advantageous to combine it with more stable

symplectic MTS algorithms. One such method is MOLLY [44–47]. This combination with SHMC should

provide even larger speedups, since it would make it possible to get closer to large MD time steps.

SHMC can be combined with other MC moves. This flexibility is one of the advantages of MC over MD

for sampling. For example, it might be useful to perform moves on the dihedral angles directly [48,49].

Another HMC method combines MD with a knowledge base potential for the acceptance criterion in the

MC step, cf. [50]. The motivation is to discriminate folded or native from metastable structures, which is

hard for current MD force fields [51,52].
Conformational dynamics [53,54] is an application that might benefit from SHMC. It performs many

short HMC simulations in order to compute the stochastic matrix of a Markov chain. Then it identifies

almost invariant sets of configurations, thereby allowing a reduction of the number of degrees of freedom in

the system. Another possible application of SHMC is as a component of the transition path sampling ap-

proach to sample rare events such as barrier crossings [55,56]. The method provides an importance sam-

pling from which transition states can be characterized using statistical mechanics.

Nonbiological applications of SHMC are possible. Typically, the momenta will not have any mean-

ingful interpretation. For example, HMC has been used for Bayesian inference in multi-layer perceptrons,
cf. [57].
Acknowledgements

This work was partially supported by an NSF Career Award ACI-0135195. Computations were per-

formed in part through a Beowulf cluster supported by NSF grant DMR-0079647 and also by an

Equipment Renovation grant through the University of Notre Dame. Scott Hampton was supported
through an Arthur J. Schmitt fellowship. The Theoretical and Computational Biophysics group at the

University of Illinois hosted Jesus Izaguirre as a visiting research assistant professor during the summer

2003, and provided access to its computational resources. Robert Skeel from Illinois gave valuable advice

on making SHMC a rigorous sampling method. The following have also contributed useful suggestions:

Hong Hu, David Hardy, Edward Maginn, and Gary Huber.



J.A. Izaguirre, S.S. Hampton / Journal of Computational Physics 200 (2004) 581–604 601
Appendix A. Pseudocode for SHMC

The following is a high level pseudocode based on our actual implementation of computing SHMC with

a 4th-order shadow.

RUN SHMC(number of steps)
01. k :¼ 2 //shadow order is 2 * k.

02. shadow c :¼# //Define constant c.

03. save positions forces(); //Save current state of the system.

04. for i:¼ 1 to number of steps

05. get new momenta();

06. run md(cyclelength);

GET NEW MOMENTA()

01. while(! accept momenta)
02. calc rand velocity(initial temperature)

03. init tot energy :¼ compute total energy()

04. run time reverse leapfrog(k/2)

05. restore state 0()

06. run leapfrog(k/2)

07. init shadow energy :¼ calc shadow()

08. momenta ener diff :¼ init shadow energy) shadow c) init tot energy

08. accept momenta :¼ accept new momenta(momenta ener diff)
09. if (not accept momenta)

10. restore positions()

RUN MD()

01. md init ener :¼max(init shadow energy) shadow c, init tot energy)

02. for i :¼ k/2+1 to cyclelength

03. run leapfrog()

04. fin total ener :¼ compute total energy()

05. for i :¼ 1 to k/2
06. run leapfrog()

07. restore prev state()

08. fin shadow ener :¼ calc shadow()

09. md fin ener :¼max(fin shadow ener) shadow c, fin total ener)

10. accept md :¼ accept new positions(md fin ener)md init ener)

11. if(not accept md)

12. restore positions forces()

RUN LEAPFROG()
01. do half kick() //Update momenta

02. beta :¼ beta + calc beta() //Update beta using Eq. (21)

03. do drift() //Update positions

04. update forces() //Update forces

05. do half kick()

06. beta :¼ beta + calc beta()

07. save system state(positions, velocities, beta)

CALC SHADOW()
//This is 4th order shadow Hamiltanion

01. Real pos1vel0; . . . ; a10; a12
02. for i :¼ 1 to number atoms
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//Compute the dot products, see Eqs. (19) and (20)

03. pos1vel0 ¼ pos1vel0 þmass½i� � 0:5 �
ðpositionsnþ1½i� � positionsn�1½i�Þ � velocitiesn½i�

04. vel1pos0 ¼ vel1pos0 þmass½i� � 0:5 �
ðvelocitiesnþ1½i� � velocitiesn�1½i�Þ � positionsn½i�

05. pos1vel2¼ pos1vel2 þmass ½i� � 0:5 �
ðpositionsnþ1 ½i� � positionsn�1½i�Þ�
ðvelocitiesnþ1½i� �2 � velocitiesn½i� þ velocitiesn�1½i�Þ

06. vel1pos2 ¼ vel1pos2 þmass½i� � 0:5 �
ðvelocitiesnþ1½i� � velocitiesn�1½i�Þ�
ðpositionsnþ1½i� � 2 � positionsn½i� þ positionsn�1½i�Þ

//Compute the a i j.

07. a10 :¼ pos1vel0 � vel1Pos0 � 0:5 � ðbetanþ1 � betan�1Þ
08. a12 :¼ pos1vel2 � vel1pos2

//Calculate the 4th order shadow.

09. shadow4:¼ c*(a10) a12/6.0)
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